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Abstract — This project outlines method of development of
control system with increased potential of robust stability for
spacecraft with nonlinear model in the class of two-parametric
structurally stable mappings, where marginal increase of
potential of robust stability was displayed. Such control is
considered as one of the key factors under uncertain conditions
which will ensure protection for the system from occurrence and
development of deterministic chaos creating “strange attractors”.

Geometric interpretation of Lyapunov’s theorem second
method and definition of system stability allowed to present
initial dynamic system in the form gradient system, whereas
Lyapunov’s function was presented in the form of potential
function from catastrophe theory. Based on the above, universal
approach is proposed for development and research of control
system with increased potential of robust stability for spacecraft
with nonlinear model.
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l. INTRODUCTION

Modern development of automatic control theory is
characterized by search of new methods and enhancement of
available methods of analytical research of nonlinear dynamic
control systems, functioning under some uncertainty of
object’s parameters and its characteristics drift within wide
ranges. Currently robust stability is one of the most topical
issues being of considerable practical interest [1].In general
formulation, it presents modification limits of system
parameters within which stability can be kept [2].

Researches of latest years also revealed that great diversity
of nonlinear system dynamics led to one of the most important
discovery of XX century in nonlinear systems — deterministic
chaos [3]. Chaos is inner feature of any nonlinear deterministic
dynamic system (object of control) [3,4,5,6].. Chaotic regimes
may arise in many real nonlinear objects being sometimes
harmful and useful in other cases, i.e. practically important
classes of problem appeared when nonlinear objects should be
controled by decreasing, eliminating or increasing the level of
chaotic state [4,5,6]. It is to be noted that deterministic chaos
appears in orientation and stabilization systems of spacecrafts
as a result of loss of stability of existing stationary states, i.e. it
is determined by indefinite parameters of the system going

beyond robust stability boundaries. One of the approaches to
deterministic chaos control may be extension of robustness
range depending upon changes in indefinite parameters of the
system, i.e. increase of potential for robust stability system
[7,8,9]. Used concept for development of control system with
increased potential of robust stability of spacecraft orientation
and stabilization systems is new scientific trend in the sphere
of control theory and is based on results of qualitative theory
of dynamic system and catastrophe theory [10,11].

The present project considers research method and
deterministic chaos control on an example of spacecraft
orientation and stabilization systems. Research of spacecraft
orientation and stabilization systems robust stability is
conducted by universal new approach based on geometric
interpretation of the second method of Lyapunov and
definition of stability of dynamic systems [12,13,14,15]. At
the same time dynamic system gradient nature, potential
functions [10] — Lyapunov functions vector [16] were
considered. In addition, main results reached by using by
abovementioned methods were provided.

The organization of this paper is as follows. Section Il
presents the mathematical model and the control problem.
Research of system stability in the stationary states is designed
in section Ill. The section 1V presents closing remarks and
conclusions.

Il. PROBLEM STATEMENT

Lets consider nonlinear system of spacecraft [17]:
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where I,, I,, I, - main central moments of spacecraft inertia
My, My & My, My,
M, - respectively projections of momentum control and

disturbing moment relative to relevant axis.

y 1
relative to relevant axis; M

Xu !

Provided that control law is given as two-parametric
structurally stable mappings [10, 11]
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Equations (1) can be outlined as follows:
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Stationary states of the system can be found by equation
system:
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By equation (4) we identify stationary state of the system
(3) which is:

XlS=O,X23=0|X3s=O,X4S =0, XSSZOiXGSZO (5)
And other stationary states are identified by equations
Xg —kixg +k? =0, i=1...6 (6)

It is known from catastrophe theory [10], that equation
completion (6) have the following solutions:
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I1l. RESEARCH OF SYSTEM STABILITY IN THE
STATIONARY STATES

A. When researching robust stability of stationary states (5)
& (7) of the system (3) developed method will be applied [12,
13], using geometric interpretation of main clause of
Lyapunov’s method. Based on geometric interpretation of
theorem on asymptotic stability all gradient vectors from
Lyapunov’s vector-functions shall be found and expansion of

system speed vector (3) components by coordinates
respectively:
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Projection of speed vector on coordinate axis is presented
as follows
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Full derivative of time from Lyapunov’s vector function
may be presented as follows:
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Full derivative of time from vector function (8)
definitely negative function.

By gradient of Lyapunov’s vector function, components of
Lyapunov’s vector function shall be constructed.
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Lyapunov’s vector function in scalar form is presented as
follows:
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Function (9) satisfied all conditions of Morse theorem
from catastrophe theory, therefore function (9) may be
replaced by quadratic form. Omitting time-consuming
operations of function expansion (8) around stationary state

(5) and identification of Hessian matrix elements, quadratic
form is described as follows:
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Condition on existing of positive Lyapunov’s function can
be identified by inequality:
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(11)
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B. Lets research robust stability of stationary state (7). For
this equation (3) lets consider in deviations relative to
stationary state (7). Omitting time-consuming formal
expansion operations and identification of derivatives in
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stationary point of different orders, equation of this state can

be described in deviations as follows:
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Identify all components of gradient vector from vector-
function and expand of speed vector components on
coordinate axes based on a geometric interpretation of theorem
on asymptotic stability [12, 13, 14].
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Full derivative of time from Lyapunov’s vector function
from state equation (12) can be identified by:
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definitely is negative function.

By Lyapunov’s vector function gradient,
components of Lyapunov’s vector function.
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Lets present Lyapunov’s vector function in a scalar form:
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Function (14) satisfies all conditions of Morse theorem
[10,11], therefore function (14) may be presented in a
quadratic form:
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Condition on existing of positive Lyapunov’s function can
be identified by inequality:
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Further to above it was revealed that control system with
increased potential of robust stability of nonlinear object in the
class of two-parametric structurally stable mappings for
nonlinear spacecraft model remains stable in case of any
changes of indefinite parameters, therefore it rules out
appearance of deterministic chaos in dynamic system and
guarantees operability and reliability of control system under
uncertain conditions.

Stationary state (5) of the system (1) remains stable in case
of changes in spacecraft parameters within range (11),
whereas stationary states (7) acquires stability feature when
losing stability state (5). These states are not stable when
simultaneous. Stationary state (11) will be stable onle when
inequalities followed (15).

IVV. CONCLUSION

Control system with increased potential of robust stability
for nonlinear spacecraft with indefinite parameters was

developed based on the approach of control system in the class
of two-parametric structurally stable mappings from
catastrophe theory with displayed marginal increase of robust
stability potential preventing occurrence of deterministic chaos
process.

For a research purpose of robust stability for control
system with increased potential of robustness new approach
was applied in development of Lyapunov’s vector-function
based on a geometric interpretation of theorem on asymptotic
stability in a space. Conditions of robust stability of control
system with increased potential of spacecraft with usage
Morse theorem from catastrophe theory were managed as a
form of a simple inequalities system which defines conditions
of Lyapunov’s vector function. System ensures stability under
any changes of indefinite parameters of spacecraft and allows
to manage deterministic chaos process in the system. This will
guarantee prevention of occurrence and development of
deterministic chaos regime under uncertain conditions in the
system.
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